The Poetics of Thought

Body Space Image

Posted in Uncategorized by Fred McVittie on September 30, 2009

As I have noted elsewhere, the different capacities that Mark Johnson indicates as allowing meaning and thought to emerge; perception, object manipulation, and bodily movement, cannot be entirely disentangled from one another, or indeed from the ‘capacity’ of space which also acts as a conceptual metaphor for the organisation of thought and meaning.  It is much more the case that these capacities work together, and in this working together an enriched and integrated vocabulary of embodied information is produced that might then lend structure to meaningful thinking.

So for example, the faculty of visual perception does not operate on its own, separate from the space in which that vision takes place or from the objects and entities upon which it falls.  Objects and their availability for manipulation are also intimately dependant upon the location of these objects in space and the bodily movement enacted in this manipulating.  The movement that bodies make requires space for this movement to occupy and is accompanied by a wide ranges of perceptual changes and potential collisions with objects.

Not only are these capacities deeply interwoven so that it is impossible to talk about one without invoking others, but there is also a set of organised relationships between the functioning of these capacities.  The extended space through which we routinely move is partially structured according to proximity and distance; small movements take us into the proximal spaces nearby whereas more extended movement places us at some distance from where we started.  Alongside this spatialisation through movement however there is also an experiential difference in the sensory mode through which we access that the objects in that physical space.  Whilst we can only see objects at a distance we can touch and possibly even taste objects that are close up.  In other words there is a consistent relationship in which spatially distant object only appear within visual perception whereas more proximal objects fall within reach of the hands, the skin, and the tongue.

There are also more elaborate correspondences which emerge from the properties of objects and the physics of our world.  Objects that feel hard and heavy in the hand tend to move downward through space toward the ground (through the influence of gravity) whilst those that feel lighter, more diaphanous or evanescent and which are difficult to grasp may dissipate in different ways, perhaps flowing or evaporating away invisibly.

There are also intersubjective differences and variations in salience that play our across the terrain of perception, objects and movements in space.  Events that we see are obviously outside of our body, possibly even a considerable distance from our body, and therefore do not have a direct and immediate ‘impact’ on our wellbeing.  Objects and events which are apprehended through the sense of touch, on the other hand (sic) do, by definition, have a direct impact on the body doing the touching, they are in extreme proximity to that body, and are likely to have a much greater significance for the person touched than for someone else who is not in contact with the object, (touching a flame causes a significantly different response than seeing one).  Visualised objects are also usually also visible to other people, existing in interpersonal shared space, which means that objects apprehended visually are likely to have similar significance for all viewers (seeing a tiger is likely to cause anyone in visible range to run away).  Touching is not only up close, but it is also usually personal and cannot be adequately shared.  Those objects that we put inside ourselves and which appear only as tastes are removed from interpersonal space entirely.  They can neither be manipulated nor moved around, nor are they entirely separable from our selves.

These completely embodied ontological differences and relations of difference suggest that there is a structured and organised set of variations in experience.  These include; the perceptual sense that is primarily used to access that experience, corresponding differences in the proximity of the stimulus to the body, the substantiality of the stimulus (whether it is hard or soft, heavy or light) and the degree to which an experience is shared amongst a number of experiencers.

What I would like to argue that this complex network of relations not only describes the organisation of lived experience in the physical world but also provides a template for the organisation of abstract thought.  This is a theme that I would like to develop by considering how the abstract idea of ‘knowledge’ might exist within this network and how variations in our use of the term might be seen to map differently across it.

Bodily Movement

Posted in Uncategorized by Fred McVittie on September 26, 2009

“Walking return the body to its original limits again, to something supple, sensitive, and vulnerable, but walking itself extends into the world as do those tools that augment the body.  The path is an extension of walking, the places set aside for walking are monuments to that pursuit, and walking is a mode of making the world as well as being in it.  Thus the waling body can be traced in the places it has made, paths, parks, and sidewalks are traces of the acting out of imagination and desire; walking sticks, shoes, maps, canteens, and backpacks are further material results of that desire. Walking shares with making and working that crucial element of engagement of the body and the mind with the world, of knowing the world through the body and the body through the world” (Solnit. 2001: p.29).

The last part of the Mark Johnson quotation that I have been drawing upon for this section of the writing cites ‘bodily movement’ as one of the capacities within which meaning and thought emerge.  By this I take him to mean that moving is a coherent, organised activity involving a set of eidetic invariants which give the act of moving a schematic structure.   The structured cognition that represents the act of moving is then available for repurposing such that other kinds of conceptual content can be organised using this structure.  Later in this writing I will indicate some examples of how this might work.

Some of the particular structures that moving provides emerge from the way perception changes as the body moves through space.  A walk through a forest or through a city causes the sights before one’s eyes to change from a single static viewpoint to a seeing that is set in motion;  trees come into new alignments as one passes them and the pebble on the path up ahead grows in size as the body moves toward it.  The sounds of those birds on the fence to your left becomes the sounds of birds behind you, growing quieter and quieter as you proceed until their song is lost among the approaching sound of cars on the road up ahead.


SOLNIT, R. (2001). Wanderlust: a history of walking. London, Verso.


Posted in Uncategorized by Fred McVittie on September 10, 2009

“Meaning and thought emerge from our capacities for perception, object manipulation and bodily movement.” – Mark Johnson.

In ‘The Meaning of the Body’ Mark Johnson claims that ‘Meaning and thought emerge from our capacities for perception, object manipulation, and bodily movement’. This means that the embodied, embedded, experiential engagement we have with the world provides the template for our organisation of knowledge in all its forms. Covert within Johnson’s statement is the implied existence of a ‘capacity’ from which (or within which) such thought and meaning emerge. Following the logic of the schema, this capacity corresponds to the phenomenal presence of space that both contains and provides a context for thought and meaning.

I haven’t got time to write this up right now.  I’ll probably get to it in the morning.

Moving and Thinking

Posted in Uncategorized by Fred McVittie on September 3, 2009

Living organisms move.  Some jump and run, others fly or slither, some crawl or burrow whilst some swim or hop, some walk on two legs, other canter on four.  Dogs and cats and horses and fish and other obviously moving beings are the stars of the ambulatory show, and in the slow motion world of geological and ecological time their get-up-and-go attracts a lot of attention.  But movement is not restricted to creatures with legs or wings and even the most sessile and sedentary lifeforms which seem to spend their entire time  passively waiting do so in relation to an active and changing environment.  Sunflowers turn their heads in lockstep with the motion of  the nearest star, pond algae floats to the surface where oxygen and light can be found, dandelion seeds drift in the wind, trees send out roots into the earth and moss grows by inches along the north side of those trees.

Movement brings change; some spots are warmer than others, some are more plentiful in resources, some are safer, and movement toward these spots brings a positive change in the likely survival of the organism making these moves.   Change of fortune through the change in location brought by movement may also be negative however; an organism blindly on the move may find itself in the waiting jaws of a predator, or in area of toxicity, or stranded far from its kin. Therefore, those rolling, tumbling, floating, drifting organisms which are able to somehow take control of this motion are more likely to survive and prosper than those which stumble randomly and fatalistically between famine and plenty, predator and prey.  Incessant movement  is part of the environmental conditions in which organisms operate and offers a set of possibilities  for evolutionary development.

Strategies for taking advantage of this ambient movement vary across the animal and vegetable kingdom.  Some organisms have settled for simple one-stop solutions such as phototropism, the facility of plants to grow toward the light.  Others have used slightly more complex mechano-chemical processes, such as the amoeba which has a cell wall that is sensitive to the presence of chemicals in the water around it that signal the proximity of a nutrient source, usually a smaller organism.  This sentivity is realised in the amoeba by the chemical composition of its cell wall changing such that it becomes less rigid and bulges in the direction of the food source.   Eventually the amoeba makes contact, surrounding and absorbing it.

The strategy for exploiting locomotion which is of most interest and relevance to us however is the one preferred by those organisms which we regard as truly mobile and which we might feel we have most in common (at least to the extent that we vegetarians try not to eat them).  These are creatures which have avoided putting all their evolutionary eggs in one basket and have gone for the building of a central nervous system.

The core principle of a central nervous system is that it connects faculties for collecting data from the outside world, call them ‘senses’, with mechanisms for movement and action in relation to that data.   So for example,  a  simple organisms may have sensors which can detect the presence of food at a particular place in its local environment, and it may also have some means of moving through that environment, a flagellum for example.  A central nervous system connecting these faculties coordinates the sense input with the motor output into an integrated sensorimotor system that allows the organism to move in the direction of the food source.

A creature with a slightly more complex central nervous system may have  additional features that those other organisms do not.  As well as being able to move and to respond to movement in a way which coordinates action with environment,  this central nervous system may be able to evaluate the changing environment and make predictions based on  ‘perceived’ differences in those values.   This structure of evaluation and perception effectively ‘represents’ salient parts of the environment as processes within the central nervous system.  This is broadly the view put forward by Pat Churchland in the book  ‘Neurophilosophy’ (1986) in which she points out that this ability to coordinate representing the world with movement in the world is not only tactically useful but is also an eminently scaleable solution to the problems of survival.  As she puts it “With increased complexity of behavioural repertoire comes increased capacity for representing the environment” (1986: 1).  As the variety and multiplicity of  sensorimotor activity increases, so the ability of the organism to not only exist within the world but also to model parts of that world within itself also increases.

Churchland goes on to  link this ability to coordinate sense and movement within a sensorimotor system with the development of brains and something like intelligence or thought.  She claims that

If you root yourself to the ground, you can afford to be stupid.  But if you move, you must have mechanisms for moving, and mechanisms to ensure that the movement is not utterly arbitrary and independent of what’s going on outside …. Neurons….are evolution’s solution to the problem of adaptive movement” (Churchland, 1986:13-14)

This is also the view put forward by Rodolfo Llinas in “i of the Vortex” (2002), a theory which he further develops into a possible account of the development of ‘the self’.   He sums up this theory in the memorable and apposite aphorism “that which we call thinking is the evolutionary internalisation of  movement“.  This is something which I may be returning to later.

On youtube at


Churchland, P. (1986) Neurophilosophy: Toward a Unified Science of the Mind-Brain. Cambridge, Massachusetts: The MIT Press.

Llinás, Rodolfo R. (2001) I of the Vortex: From Neurons to Self. Massachusetts: The MIT Press.